New disease-resistant food crops in prospect

Researchers have uncovered the genetic basis of broad-spectrum resistance to a viral infection that, in some parts of the world, is the most important pathogen affecting leafy and arable brassica crops including broccoli, cauliflower, cabbage, kale, swede and oilseed rape. They have tested resistant plants against a range of different strains of the virus taken from all over the world and, so far, no strain has been able to overcome the resistance.

The research on the so-called Turnip mosaic virus (TuMV), led by Dr John Walsh of the University of Warwick and funded under the BBSRC Crop Science Initiative, has been taken forward in a new partnership with Syngenta Seeds.

“TuMV causes really nasty-looking black necrotic spots on the plants it infects – ‘a pox on your’ vegetables!” says Dr Walsh. “This can cause significant yield losses and often leaves an entire crop unfit for marketing. At best, a field of badly affected Brussels sprouts might provide some animal fodder, but these vegetables would not be appealing to most shoppers. The virus is particularly difficult to control because it is transmitted so rapidly to plants by the insect vectors.”

Dr Walsh and his team identified the major gene involved in resistance to TuMV and discovered that the way in which it creates resistance is completely new. Using this knowledge, they found that it was possible to identify plants with an inherent resistance that could be used to speed up the breeding process and develop commercial varieties that are resistant to TuMV.

The team from University of Warwick are now working with industry partner
Syngenta Seeds to breed resistance into Chinese cabbage. They hope in future to do the same with other crops such as broccoli, cabbage and kale.

Related content

Leave a reply

Food and Drink Technology